
Derby/S: A DBMS for Sample-Based Query Answering

Anja Klein Rainer Gemulla Philipp Rösch Wolfgang Lehner

TU Dresden
Database Technology Group

dbgroup@mail.inf.tu-dresden.de

ABSTRACT
Although approximate query processing is a prominent way
to cope with the requirements of data analysis applica-
tions, current database systems do not provide integrated
and comprehensive support for these techniques. To im-
prove this situation, we propose an SQL extension—called
SQL/S—for approximate query answering using random
samples, and present a prototypical implementation within
the engine of the open-source database system Derby—
called Derby/S. Our approach significantly reduces the re-
quired expert knowledge by enabling the definition of sam-
ples in a declarative way; the choice of the specific sam-
pling scheme and its parametrization is left to the system.
SQL/S introduces new DDL commands to easily define and
administrate random samples subject to a given set of opti-
mization criteria. Derby/S automatically takes care of sam-
ple maintenance if the underlying dataset changes. Finally,
samples are transparently used during query processing, and
error bounds are provided. Our extensions do not affect tra-
ditional queries and provide the means to integrate sampling
as a first-class citizen into a DBMS.

1. INTRODUCTION
The sheer amount of data in today’s ever-growing

databases overstrains the processing resources currently
available. For example, the usability of explorative data
analysis and decision support applications grows signifi-
cantly when answers are provided almost instantly—instead
of letting users wait for hours. A solution to the problem is
provided by approximate query answering techniques, with
sampling being among the most popular and versatile strate-
gies.

Database sampling has made immense progress during the
past years, but to best of our knowledge, there is no DBMS
which natively supports these techniques on a broader scale.
The Derby/S system (an open-source deviate of the IBM
Cloudscape DBMS) is the first to integrate approximate
query processing into an existing DBMS. We extended the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2006, June 27–29, 2006, Chicago, Illinois, USA.
Copyright 2006 ACM 1-59593-256-9/06/0006 ...$5.00.

FOR
�

�

�

� GROUP BY
�

�

�

� groupingExpression�

� AGGREGATIONS
�

�

�

� aggregateExpression�

� ,
�

�

�

�

�

�

�

�

Figure 2: The optimization clause

SQL language, thereby relieving the user of the need to learn
a new query language. Moreover, there is a huge variety
of database-related sampling schemes, but the decision on
the optimal technology for a given setting is challenging. To
overcome these limitations, the contributions of Derby/S are
as follows:

• Derby/S provides an integrated language to adminis-
trate materialized samples of arbitrary database views.

• Derby/S keeps the samples up-to-date when base data
evolves.

• Our query language seamlessly extends SQL. Derby/S
transparently selects the best sample for a query.

2. SAMPLES AS DATABASE OBJECTS
Using state-of-the-art technology, a user has to query the

data source, choose a sampling scheme, parametrize it, im-
plement it, run it, propagate results to the DBMS and im-
plement triggers to maintain the sample. Clearly, these
steps require extensive knowledge of database technology
and sampling theory, which is accessible to experts only. In
contrast, our Derby/S prototype provides an easy and intu-
itive way to relieve the user of the need to perform any of the
above steps. Given an arbitrary SQL statement, Derby/S
automatically chooses the optimum sampling strategy, and
takes the responsibility to compute and maintain the sam-
ple. The syntax of the CREATE SAMPLE command is shown
in Figure 1. As every other database object, each sample
is identified by a unique name. It is either bounded in size
(TUPLES) or grows and shrinks with the size of the under-
lying data (PERCENT). Source data is defined using an SQL
query, which basically underlies the same restrictions as ma-
terialized views [6] do.

Derby/S is able to optimize a sample for a given set of
group-by operations and/or aggregate functions, thereby in-
creasing precision for a specific class of queries (see Fig. 2).
For example, the following statement creates a 10%-sample
of the lineitem table of a TPC-H database, which computes
monthly turnovers with improved precision:

CREATE
�

�

�

� SAMPLE
�

�

�

� name AS
�

�

�

� (
�

�

�

� SelectStatement)
�

�

�

� OF
�

�

�

�
�

� MAX
�

�

�

�

�

�

SIZE
�

�

�

� size TUPLES
�

�

�

�
�

� %
�

�

�

�

�

�

�

��

� OptimizationClause�

�

�

�

MANAGED BY
�

�

�

� USER
�

�

�

�
�

� SYSTEM
�

�

�

� RefreshClause

�

�

Figure 1: The CREATE SAMPLE statement

CREATE SAMPLE s lineitem

AS (SELECT * FROM lineitem)

OF SIZE 10 %

FOR GROUP BY month

FOR AGGREGATIONS sum(turnover) ...;

During the execution of the CREATE SAMPLE command,
empty sample tables are created and the metadata catalog
of the DBMS is updated. Sampling is not conducted until a
REFRESH statement is executed (see Sec. 3). If no optimiza-
tion information is given, Derby/S computes a uniform sam-
ple of the base data. Otherwise, the basic challenge is to pro-
duce samples which are tailored, but not restricted, to the
optimization criteria. Several studies, e.g. [8], have shown
that knowledge of the application significantly enhances the
precision of the estimates derived from the sample. For ex-
ample, [3, 2] proposed sampling schemes for group-by op-
erations and [4, 8] introduced techniques for dealing with
high-variance datasets.

Derby/S is able to store and exploit additional synopses
for each of its samples. The MAX keyword (see Fig. 1) en-
sures that the total memory of the sample and the syn-
opses never exceeds the given space constraint. In this case,
Derby/S carefully weighs the amount of space allocated to
the sample (for arbitrary queries) and additional synopses
(for ”monthly-turnover” queries). Otherwise, Derby/S pro-
duces additional synopses as needed and without any space
limitations. The motivation behind this procedure is that
the query response time for arbitrary queries depends on
the sample size, while ”monthly-turnover” queries use ad-
ditional data. This approach is related to dynamic sample
selection [3].

3. SAMPLE MAINTENANCE
Each sample has to be maintained if the underlying

data changes. However, maintenance incurs additional
cost, thereby reducing the performance of transactional
query processing. Derby/S supports a variety of strate-
gies to balance sample maintenance cost and up-to-dateness:
IMMEDIATE refresh updates the sample immediately after a
modification of the base data, so that the sample is always
up-to-date. Since this approach may be expensive, Derby/S
additionally supports deferred maintenance [5], i.e., the sam-
ple is refreshed periodically or on demand. The latter is ini-
tiated by issuing a REFRESH SAMPLE command. This com-
mand is applicable (though not necessary) for other types
of deferred refresh as well. The syntax of the refresh clause
is shown in Fig. 3.

There are two options for the refresh procedure: COMPLETE
refresh recomputes the sample from scratch, whereas FAST

refresh tries to use as much of the existing synopsis as pos-
sible (thereby reducing maintenance cost). Note that com-

REFRESH
�

�

�

� IMMEDIATE
�

�

�

�
�

� FAST
�

�

�

�
�

� COMPLETE
�

�

�

�

�

�

ON DEMAND
�

�

�

�
�

� EVERY
�

�

�

� period

�

�

�

�

Figure 3: The REFRESH clause

plete recomputation in combination with immediate refresh
is neither supported nor desired:

Incremental Complete

Immediate IMMEDIATE —
Deferred FAST COMPLETE

4. APPROXIMATE QUERY ANSWERING
We extended the SQL DML in order to support approxi-

mate query processing. Our extension is independent from
the actual synopses used for estimation, and applies to other
approximation techniques as well. Traditionally, approxi-
mate query processing involves at least the following steps:

1. Decide on the optimal synopsis for the given query.

2. Implement an appropriate estimator.

3. Rewrite the query to use the chosen synopsis instead
of base data.

4. Compute the query result.

5. Try to quantify the estimation error.

Again, Derby/S automatically executes the above steps.
SQL/S is a seamless extension of the SQL query language,
with a minimum amount of modifications. It is up to the
user to decide whether an exact answer is required or an
approximate result suffices.

4.1 Completeness and Exactness
A major contribution of SQL/S is the careful treat-

ment of the type of approximation conducted by the
underlying algorithm. Consider a dataset R =
{(A, 10), (A, 20), (B, 20), (B, 30)} and the following SQL
query:

. SELECT col1, AVG(col2) FROM r GROUP BY col1

Now, suppose that we want to compute an approximate an-
swer to the given query. There are two different classes of
error: On the one hand, the approximate answer may be in-
complete, i.e., some of the required results are simply miss-
ing. One the other hand—even if the answer is complete—
the aggregate of COL2 may be an estimate, thereby inducing
an estimation error. Thus, we classify approximate results
as shown in the following table:

SELECT
�

�

�

� SOME
�

�

�

�
�

�

�

�

attribute�

� APPROXIMATE
�

�

�

�
�

� ∼
�

�

�

�
�

�

�

�

expression

�

�

�

� ,
�

�

�

�

�

�

Figure 4: Extension of the SELECT statement

INTERVAL
�

�

�

� (
�

�

�

� expr ,
�

�

�

� confidence)
�

�

�

�
�

� CONFIDENCE
�

�

�

� (
�

�

�

� expr ,
�

�

�

� interval)
�

�

�

�

�

�

�

� ,
�

�

�

�

�

�

Figure 5: Providing error bounds

Exact Estimate

Complete (A, 15), (B, 25) (A, 17), (B, 23)
Incomplete (A, 15) (B, 23)

SQL/S allows the user to decide which types of error are
acceptable. We introduced two additional keywords into the
SQL query language (see Fig. 4): SOME and APPROXIMATE

(abbr. ∼). The absence of the SOME keyword ensures com-
pleteness of the query result. Since the amount of complete-
ness is difficult to quantify, Derby/S selects only synopses
which are known to return the complete result in this case.
The APPROXIMATE keyword allows Derby/S to estimate the
value of an arbitrary aggregate. Thus, in SQL/S, the above
query may be written as follows:

. SELECT col1, ∼AVG(col2) FROM r GROUP BY col1

Note that the tilde is the only difference between the exact
and the approximate query. Both queries reference the base
data only, that is, approximate queries do not refer to the
underlying synopses. In fact, from a user’s point of view,
it is of no interest which estimation method is used by the
processing engine.

4.2 Error Bounds
Derby/S provides customized error bounds. Such error

bounds are a key requirement for any approximate answer.
Typically, most estimators provide error guarantees in the
form of confidence intervals, i.e., the estimate lies within
±I of the exact answer with probability p. To compute the
error bound, either I or p have to be specified (p defaults
to 95%). We introduce two additional functions—one which
computes I given p and one which computes p given I (see
Fig. 5). Our current implementation makes use of large-
sample confidence intervals [7].

In analogy, Derby/S allows to bound the error in advance
using the very same techniques (see Fig. 6). Thus, if we
want the approximate result to be within 5% of the exact
result with high probability, the example query changes to:

. SELECT col1, ∼AVG(col2) INTERVAL=5%

. FROM r GROUP BY col1

5. RELATED WORK
The AQUA project [1] pioneered the use of synopsis data

INTERVAL
�

�

�

� =
�

�

�

� I %
�

�

�

�
�

� CONFIDENCE
�

�

�

� =
�

�

�

� p %
�

�

�

�

�

�

Figure 6: Bounding the error

structures for approximate query answering. Like Derby/S,
AQUA transparently rewrites incoming SQL queries, but
the system provides no means to distinguish approximate
and exact queries. Furthermore, the error bounds produced
by AQUA are not customizable, i.e., users have to compute
them by themselves in most cases. An additional drawback
is AQUA’s lack of support for synopsis creation, mainte-
nance and management.

The SQL standard proposes a TABLESAMPLE clause, which
unfortunately only covers the creation of samples of a sin-
gle table. Neither estimation, nor error bounds, nor any
advanced sampling schemes are supported therein.

6. DETAILS OF THE DEMO
We plan to interactively build up a well-designed sample

structure for the TPC-H benchmark by using the CREATE

SAMPLE command. We will show how maintenance of these
synopses is conducted on-the-fly, and quantify the perfor-
mance impact of the different strategies on transactional
query processing. We will provide insight into the internal
data structures used by Derby/S, e.g., its metadata man-
agement. We will demonstrate how samples are selected
dynamically, and report on the quality of the produced es-
timates as well as on the increase in performance. By pro-
viding some examples, we will explain how Derby/S decides
on the best sample to use and how estimates are computed.

Acknowledgment. The authors like to thank F. Beyer,
M. Dumat and B. Jäcksch for implementing large parts of
the prototype.

7. REFERENCES
[1] S. Acharya, P. B. Gibbons, and V. Poosala. Aqua: A

fast decision support system using approximate query
answers. In VLDB, pages 754–757, 1999.

[2] S. Acharya, P. B. Gibbons, and V. Poosala.
Congressional sampling for approximate answering of
group-by-queries. In SIGMOD, pages 487–498, 2000.

[3] B. Babcock, S. Chaudhuri, and G. Das. Dynamic
sample selection for approximate query processing. In
SIGMOD, pages 539–550, 2003.

[4] S. Chaudhuri, G. Das, and M. Datar. Overcoming
limitations of sampling for aggregation queries. In
ICDE, pages 534–544, 2001.

[5] R. Gemulla and W. Lehner. Deferred maintenance of
disk-based random samples. In EDBT, pages 423–441,
2006.

[6] A. Gupta and I. S. Mumick. Maintenance of
materialized views: Problems, techniques, and
applications. IEEE Data Eng. Bull., 18(2):3–18, 1995.

[7] P. J. Haas. Large-sample and deterministic confidence
intervals for online aggregation. In SSDBM, pages
51–63, 1997.

[8] C. Jermaine. Robust estimation with sampling and
approximate pre-aggregation. In VLDB, pages 886–897,
2003.

